
Sequential Components Analysis

From molecules to whole organisms, the dynamics of natural living systems depart from “thermodynamic equilibrium” [Gne-
so�o, 2018]. Statistically, the state trajectories produced by such systems are non-reversible, i.e. they do not have equal likeli-
hood of occurring in the reverse temporal direction even in stationary regimes. For example, neural systems exhibit anisotropic
waves of activity (e.g. during development), produce precisely ordered spike sequences (e.g. episodic memory), or generate ro-
tational pa�erns of activity (e.g. motor control). Despite the prevalence and importance of sequential neural activity, there is
a relative paucity of methods for exploring the spatio-temporal structure of irreversibility in multivariate time series. Here, we
introduce Sequential Components Analysis (SCA), a simple yet e�ective and scalable method for doing this. SCA performs
a systematic analysis of spatio-temporal covariances (all time pairs and unit pairs), and extracts the spatio-temporal modes
of activity that contribute most to sequentiality. We highlight the main distinguishing features of the method using a toy
example, and apply it to monkey M1 motor activity as well as rat hippocampal data where we show that sequential features
separate navigational memories be�er than mere principal components.

Sequentiality and space-time decompositionWe assume
data samples, denoted as X , come as T × N matrices,
where T is the number of time bins and N is the number
of units (Fig. 1A, le�). We say that a spatio-temporal pro-
cess X ∈ RT×N is reversible (non-sequential), if, and only if
p(Xti ,Xt′i′ ) = p(Xt′i ,Xti′ ) for any two distinct time points (t , t ′)
and any two distinct units (i, i′). This definition generalizes
the notion of “reversibility” (or “detailed balance”, which only
applies to stationary processes) to the case of non-stationary
processes. By negation, X is said to be “sequential” if it is not
reversible.

To study the sequentiality of a spatio-temporal process, we
first compute its space-time TN × TN covariance matrix. For
ease of notation, we call the centered data X , too. The space-
time covariance matrix C ∈ RTN×TN is defined as:

C =
〈
vec (X ) vec (X )T

〉
. (1)

where vec (X ) is the standard vectorization operator (verti-
cal stacking of the columns of X) and 〈·〉 denotes averaging
over di�erent spatio-temporal samples. While in general this
matrix is prohibitively large to store or compute, we have de-
veloped a variant of the method that entirely bypasses the
need to compute C directly (see below).

We then decompose C as the sum of two components:
one that contains the symmetric parts of all T × T cross-
covariance matrices between all pairs of units which we call
C(+) , and one that contains the anti-symmetric counterparts,
which we call C(−) (Fig. 1A - center). The la�er summarizes
the spatio-temporal organization of sequentiality in the data,
at least up to second-order moments (i.e. at least for a Gaus-
sian process). Specifically, we define:

C(+) = C + σ (C) (2)

C(−) = C − σ (C) (3)

where, for any matrix M ∈ RNT×NT , we use the notation
σ (M) to denote the matrix obtained by separately transpos-
ing each T × T block of M (there are N2 of them). We note
that C(−) is symmetric but not positive definite (e.g. its trace
is zero).

We use these two components to define the degree of sequen-

tiality of a spatio-temporal process as

s =

∥∥C(−)
∥∥2
F

‖C(+)‖2F
(4)

where ‖‖2F is the squared Frobenius norm. This metric is
upper-bounded by one, and can be used to compare the se-
quentiality of various datasets.

We show that the spatio-temporal structure of sequential-
ity can be discovered based on an analysis of C(−)’s principal
subspace. The methodology is straightforward: we seek the
top singular vectors of C(−), and reshape them as T ×N pro-
totypical time series (Fig. 1A, right); these form a subspace
of spatio-temporal activity pa�erns that capture the non-
sequential aspects of the organization of space-time cross-
covariances in the data.

Scaling the method and cross-validation For large N
and/or large T , computing (or even storing) C(−) is in-
tractable. To bypass having to compute C(−) directly, we de-
rive an e�icient computation ofmatrix-vector products of the
form C(−)v for any TN-vector v = vec (V ):

C(−)v = vec
(〈
Tr[XV T ]X − XV TX

〉)
(5)

which can be estimated in O(min(KNT 2,KTN2)) based on a
number K of samples. Using this identity, it is possible to
very e�iciently compute the principal subspace of C(−) us-
ing either randomized SVD algorithms [Halko et al., 2011]
or more standard iterative optimization methods for matrix
factorization. Here, we directly minimize

C(Z ) = ‖C(−)C(−)T − ZZT‖2F (6)

over matrix Z ∈ RNT×r , where r is the desired rank; the gra-
dient of C involves Equation 5.

We have also developed a bootstrapping method (inspired
by Machens, 2010) to estimate the noise floor in the singular
values of C(−) – this allows us to determine how many of the
top modes contribute significantly.

Extensions Our iterative method based on Equation 6 al-
lows constraints to be added such as sparsity. SCA with an
`1 penalty on Z can demix sequences that occur in distinct
populations (not shown here). We also show that the rota-
tional dynamics model underlying jPCA [Churchland(2012)]



assumes a particularly simple SCA decomposition: pure ro-
tations in a plane spanned by two orthogonal vectors (x1, x2)
(starting with a random phase in each trial) give rise to aC(−)

of the form:

C(−) = (x1xT2 − x2xT1 )⊗ (scT − csT ) (7)

where s and c ∈ RT are a pair of sine and cosine temporal
waveforms. In this case, the top two modes of C(−) corre-
spond to rotational motion of the activity vector in the (x1, x2)
plane. The equation above generalizes to multiple rotations
in orthogonal spatial planes, in which case C(−) is the sum of
multiple Kronecker products similar to Equation 7.

Illustrative toy example To illustrate the method, we con-
struct a toy dataset comprised of one rank-2 sequential mode
(pure rotation), overwhelmed by two non-sequential modes
of much higher variance; then scaled by a transient enve-
lope, plus Gaussian observation noise (Fig. 1B, le�). Meth-
ods such as PCA can discard important sequential modes if
these, for instance, ride on top of larger global fluctuations
shared across all neurons. In contrast, SCA is impervious to
non-sequential modes irrespective of their variance, and here
successfully recovers the hidden sequence (Fig. 1B, right).

Sequences in M1 activity during reaching Movements
require largely sequential activation of muscles, which pre-
sumably should be reflected in neural activity. We apply SCA
to M1 activity (Churchland lab, N = 218 neurons) recorded
in monkeys while they executed K = 108 di�erent reaches
(Fig. 1C, le�). The data was first averaged across trials for

each condition; thus, we analyzed across-conditions covari-
ances. SCA here confirms that the data is highly sequen-
tial (s = 0.48), with several significant modes which, follow-
ing reordering of the neurons by peak time in each mode,
reveal clear sequences. While C(−)’s singular vectors (seq.
modes) are orthogonal, this does not in principle guaran-
tee that they correspond to di�erent sequences. In this case
though, the sequences appear genuinely di�erent: there is
no apparent correlation in the neurons’ rank order between
pairs of modes (Fig. 1C, right).

Encoding of spatial memories in sequential subspace:
hippocampus, navigational taskWe apply SCA to unpub-
lished rat hippocampal data recorded during a spatial mem-
ory task in a three-arm maze (Fig. 1D, le�). The data consists
of N = 315 neurons recorded over the 8-second delay period
of the task (K = 100 trials), during which the rats have to run
in a wheel before being allowed back into the maze for the
next trial. It must then choose one of the three maze arms to
collect a reward, before returning to the wheel. Critically, the
rat must visit the arms in a specific order, and must there-
fore remember where he came from in the previous trial in
order to decide where to go next. The data (courtesy of Brian
Lustig, HHMI Janelia) was collected using silicone probes,
binned in 20ms bins and filtered with a Gaussian kernel. We
compared projections of the data into the top two SCA and
PCA components (Fig. 1D, right). The sequential subspace
be�er separatesmemories of recent navigation episodes, pro-
viding evidence that the brain may use sequential dynamics
to encode such episodes in the hippocampus.
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Figure 1. Please see text for full details. The SCA workflow (A) is applied to a toy dataset (B), to monkey M1 data (C), and to
a delayed three-arm spatial memory task demonstrating that memories of recent navigation episodes are be�er separated in
the top sequential subspace (D).


